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ABSTRACT

The angular dependence of the upper critical fields, Hc(8) for a
set of NbTi-Ge superlattices were studied at various temperatures. The
behavior of Hc(O) at lower temperatures deviates from the Tinkham
expression which is expected to be valid only in the Ginzberg-Landau
regime close to Tc. We examine a model for calculating Hc(O) involving
the lowest eigenvalue of the gauge invariant diffusion equation
(subject to boundary conditions appropriate to a slab) in the de Gennes
expression for the upper critical field of a dirty superconductor at
all temperatures. The disorder related localization and interaction
effects as well, as the paramagnetic limiting effect, are also
considered.

INTRODUCTION

In a layered superlattice structure, the superconducting behavior
is of interest because both the superconducting and barrier layer
thicknesses may be made comparable to characteristic length scales
describing the superconducting state.

One of the most dramatic demonstrations of these finite layer
thickness effects is the dimensional crossover of superconductivity as
revealed by the upturn of the parallel critical fields Hc211 (T) at a
temperature T* where the effective coherence length perpendicular to
the layers, ý,(T), becomes comparable to the modulation wavelength.[1-111
At temperature below T*, a 2D behavior in Hc211 (T) is observed[7,9,11];

Hc2 11(T) = 00 /2rýr1 (T) (Ds//12) - (l-T/Tc) (1)

where Ds is the superconducting layer thickness and ý11 is the in -
plane coherence length. In the 2D regime, the angular dependence
of Hc2 at a temperature near 

T
c is given by the Tinkham expression:

Hc2 (0) H2j()c2 c2( )

IcoseI + 2 sin 0 = 1 , (2)
c2± HC211

where Hc2II is given by Eq. (1), Hc2± = #0/2• ý21; 0 is the angle
between magnetic field and the film normal. A particular feature of
Eq. (1) is the existence of a cusp structure for 0 = n/2. We note
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that Eq. (2) is strictly applicable only near the zero field transition
temperature, Tc, where Ginzberg-Landau theory is valid. Indeed, we have
observed a clear deviation from Eq. (2) when Hc2I(8) is studied at
temperatures far from Tc, and this deviation will be a focus of this
paper.

From Eq. (1), Hc211 (T) in 2D is inversely proportional to Ds;
idealy a 2D film with a small Ds would have a significantly enhanced
Hc211. However, this enhancement due to decreasing Ds is usually
affected by higher disorder in the films and is also subject to
paramagnetic limiting.[12] There is now a general concensus that disorder
and its related localization and interaction effects reduces Tc due to
an enhanced Coulomb repulsive interaction and a depressed density of
electron states at the Fermi level.[13,14,15]

A proper theory of a disordered superconducting superlattice, in
particular Hc2(

0
) at various temperatures, will have to include the

effects of disorder and paramagnetic limiting, and a provision for the
interlayer coupling; to our knowledge such a theory is not available.

In this paper, we will assume that the Ge layer thickness is
sufficiently thick that the Josephson coupling between layers, in the
temperature regime studied, can be neglected. Hence, the existing
theories for superconducting slabs can be applied to analyze our
Hc2(0) data.

The sample preparation and characterization is reported elsewhere[161.

THEORETICAL MODEL

We limit ourselves to the case of a superconductor/insulator
superlattice where the (Josephson) coupling between the
superconducting layers is negligible and the system may be regarded as
stack of independent superconducting slabs. Near the zero field
transition temperature, the Ginzberg-Landau (GL) equation is written as

h2 V 2ie )2" "-_- (V- A) #+ aa= o, (3)

where 4 is the complex "order parameter", and A is the vector
potential for the external field. For an arbitrary field orientation,
the vector potential is written as:

A = y(x cosO - zsinO) H; (4)

here H is in the x,z plane and z is the film normal direction. Writing
#(r) m u(x,z)eikY, the lowest eigenvalue of the linearized GL equation,
with appropriate boundarycondition for a slab with thickness Ds, is[10]

22

-a ___ m~ i~,w (5)2a = 2 cl + -2 sin c mc

With the previous definitions for Hc211 and Hc2±, the above equation is
equivalent to the Tinkham expression, Eq. (2).
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To study the Hc2(0) at an arbitrary temperature, we use the

linearized self-consistent field method as implemented in de Gennes.[17]

In the dirty limit, the superconducting t4ansition temperature is

determined by a correlation function g(r,r',t) satisfying a modified

(gauge invariant) diffusion equation,
-[ 2ie-* ]28 --

[V-- A(r)I g(rr',t) = •- g(r,r',t) , (6)

subject to the condition that g approaches a 6 function as t -* 0, and

S(V _--c A) g = 0 at a vacuum-superconductor boundary where n is the
surface normal . The eigenfunctions, gn(r), which satisfy Eq. (6) are
then given by

2ie (
D[V -j A(r]

2  
r (r)D[ h -c ()1gn(4) = "ngn() (7)

and we express g(r,r',t) as

-flnt

g(r,r',t) - ( g gn(r) e (8)
n

n

The lowest eigenvalue, 00, of Eq. (8) is substituted in the
following expression to obtain the temperature dependence of the upper
critical field:

In(T/T 0 ) c X(W0 /2zkBT) = X(eDH/2fkckBT), (9)

where x(z) = $(-) - #(• + z); • is the digamma function. Note Eq. (7)
is identical to Eq. (3) if we identify D as h2 /4m and go as a; the
boundary condition is also the same. H 2(8) is then given by

Qn(T/Tc 0 ) = x(a'/2irkBT), (10)

a' - (eD/c) Hlcosel + (2e2D/hc2)(D 2 /12)H2sin2e . (11)

We note that Tco in Eq. (10) is the bulk zero field superconducting
transition temperature. In a disordered quasi-2D system, the real Tc
will generally be lower than Tco and is given by the Maekawa and
Fukuyama[13] equation:

In(T c/T = -(A /2)[n(5.4 0Tc0/Tc)]2- (Al/3)[1n(5.4%Tc 0/ITc)], (12)

where, A1  1.25 x 10-5 RD glN(0); RD is the sheet resistance and
g 1 N(0) is the exchange interaction constant; Co and I are the BCS
coherence length and mean free path, respectively.

Disorder also affects the upper critical field and has been
studied by Maekawa, Ebisawa and Fukuyama.[14] They obtained the
following expressions:
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In(T/T0) = x(B*) + RHF + RV , (13)

Al Co T CT

RF = - 2 [In(5.4 ! T-s)]2"AlIn(5"4 0--)X(B), (14)
c c

CI0T0. C0 T 0OS-[n(5.4 ! ----c) 2 x(B), (15)
RV Y [I3n(5.4 1 c 1 Tc

where
C0 T 0

B* - eDH[(l-X In (5.4 y j-- )]/2irkBcT, A = 1.25xl0-
5

R (16)
c

and B - eDH/2rkBcT. Here RHF and RV are the "self-energy" and "vertex"
corrections both of which arise from the Coulomb interaction effect.
The factor (1-A In 5.4 ýo TcO/I Tc) in B* (Eq. 16) is a correction to
the diffusion constant due to the localization effect. We note that in
the limit of vanishing disorder, Eq. (13) reduces to the Maki-de Gennes
- Werthamer expression Eq. (9); so we are encouraged to use the angular
dependence of Eq. (11) in Eqs. (13)-(15) to obtained an expression for
Hc2(T,O) of a disordered, quasi-2D system. Finally, the electron spin
paramagnetic contribution is introduced by adding a term
3/2(rso/h)(MH)

2
/2kBT to the argument B*.[6,18] This expression will be

used to analyze our Hc2(0) data.

RESULTS AND DISCUSSIONS

The angular dependence of the critical field, Hc2(e), is shown in
Fig. 1 for four NbTi-Ge samples (the sample characteristics are shown
in Table 1). The sample with the thickest Ds (221A) showed isotropic
Hc2(0); hence each NbTi layer is by itself 3D like.

The remaining three samples exhibit a large anisotropy with cusps about
the parallel field orientation (0 = 900) indicating 2D behavior. The
solid lines in Fig. 1 are obtained from the Tinkham expression by
fixing the two end points at 0 = 00 and 90*. We see that at higher
temperatures, curves E and D, are consistent with the Tinkham
expression, while at lower temperature (far from the zero field Tc),
curves A, B and C, a considerable deviation from the Tinkham theory is
clearly seen.

Identifying eDH/c of Eqs. (13)-(15) with a' of Eq. (11) and
including the paramagnetic term, we solved Eq. (13) numerically for
Hc2(0) at fixed temperatures. The two free parameters D and Ds are
fitted to the Hc2± and Hc2I data, respectively, so the fitting is
essentially a two point fitting. The results are shown in Figs. 2(a),
(b) and (c) (model 1). The fitting parameters are shown in Table 2.
We see that the fit to the experimental data is improved, but a
considerable deviation still exists. If we arbitrarily assume that
only the vertical component of the external field affects the self-
energy and vertex corrections to the upper critical field (ie. we
simply replaced H by Hicos0i in Eqs. (14) and (15)), we obtain a more
satisfactory fit to the experimental data for the two thinner samples.
It is unclear at the present why this second model anzatz fits the Hc2(8)
better. One might postulate that the localization contribution is less
significant in the parallel field orientation, due to the confinement
of the "orbital" motion of the electrons in the z direction[14].
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TABLE I Sample characteristics and relevant parameters.
Ds and DGe are the layer thicknesses of Nb0 . 5 3 Ti 0 .4 7 and Ge,
respectively.

Sample Ds(A)/DGe(A) Tc(K) RO(Q)

a 59/38 4.78 196
b 96/45 6.5 100
c 144/32 7.5 61
d 221/45 8.9 47

Fig. 1 Angular dependence of Hc2
fitted with the Tinkham
theory. Here the solid
lines are from the
Tinkham expression and the
dotted line is a guide eye.
The symbol designations are:
V, 59A/38A (4.2K); x,
59A/38A (1.6K); 1, 96A/45A
(4.2K);
e, 96A/45A (1.5K); A,
144A/32A (4.2K); +,
221A/45A (4.2K).

0)

e

Fig. 2 Hc2(0) fitted with the de
Gennes - MEF expression Eq.
(13). Model 1 uses the full
expression for a'(Eq. 11),
while Model 2 uses only the
normal component of a' in
Eqs. (14) and (15); + is the
experimental data.
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TABLE II Parameters used in the numerical fit.

Sample Model I Model 2
NbTi(A)/Ge(A) T(K) D(cm2/s) Ds(A) D(cm

2
/s) Ds(A)

59/38 1.6 0.44 119 0.44 81
96/45 1.5 0.433 113.5 0.434 91.8

144/32 4.2 0.365 125 0.367 117

We note that neither model fully accounts for Hc2(0) of the sample
with D, = 144 A. This may be due to an increasing 3D nature of the
thickner samples for which the 2D theory (Eq. 13) is no longer valid.
We therefore conclude that further refinements of the above model are
required. Extensions of the present model to anisotropic, Josephson
coupled superlattices is also desirable.
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